MENU

芦苅班

芦苅班・論文発表

Murao, M., Kato, R., Kusano, S., Hisamatsu, R., Endo, H., Kawabata, Y., Kimura, S., Sato, A., Mori, H., Itami, K., Torii, K.U., Hagihara, S., and *Uchida, N.

A small compound, HYGIC, promotes hypocotyl growth through ectopic ethylene response.

Plant Cell Physiol., 64, 1167-1177 (2023) Link


*Takahashi, H., Abo, C., Suzuki, H., Romsuk, J., Oi, T., Yanagawa, A., Gorai, T., Tomisaki, Y., Jitsui, M., Shimamura, S., Mori, H., Kaga, A., Ishimoto, M., Seki, H., Muranaka, T., and Nakazono, M.

Triterpenoids in aerenchymatous phellem contribute to internal root aeration and waterlogging adaptability in soybeans.

New Phytol., 239, 936-948 (2023) Linkプレスリリース


Tomoi, T., Tameshige, T., Betsuyaku, E., Hamada, S., Sakamoto, J., Uchida, N., Torii, K.U., Shimizu, K.K., Tamada, Y., Urawa, H., Okada, K., Fukuda, H., Tatematsu, K., *Kamei, Y., and *Betsuyaku, S.

An improved method to achieve targeted single-cell gene induction in Arabidopsis thaliana.

Front. Plant Sci., 14, 1171531 (2023) Link


*Nagai, K.,and Ashikari, M.

Molecular mechanism of internode elongation in rice.

Breed. Sci., 73, 108-116 (2023) Link


Ning, J., Yamauchi, T., Takahashi, H., Omori, F., Mano, Y., and *Nakazono, M.

Asymmetric auxin distribution establishes a contrasting pattern of aerenchyma formation in the nodal roots of Zea nicaraguensis during gravistimulation.

Front. Plant Sci., 14, 1133009 (2023) Link


Agata, A., Ashikari, M., Sato, Y., Kitano, H., and *Hobo, T.

Designing rice panicle architecture via developmental regulatory genes.

Breed. Sci., 73, 86-94 (2023) Link


*Peralta Ogorek, L.L., Takahashi, H., Nakazono, M., and *Pedersen, O.

The barrier to radial oxygen loss protects roots against hydrogen sulphide intrusion and its toxic effect.

New Phytol., 238, 1825-1837 (2023) Link


Nakashima, Y., Kobayashi, Y., Murao, M., Kato, R., Endo, H., Higo, A., Iwasaki, R., Kojima, M., Takebayashi, Y., Sato, A., Nomoto, M., Sakakibara, H., Tada, Y., Itami, K., Kimura, S., Hagihara, S., Torii, K.U., and *Uchida, N.

Identification of a pluripotency-inducing small compound, PLU, that induces callus formation via Heat Shock Protein 90-mediated activation of auxin signaling.

Front. Plant Sci., 14, 1099587 (2023) Link


アフリカの栽培イネが芒(のぎ)を失った理由を解明

Bessho-Uehara, K., Masuda, K., Wang, D., Angeles-Shim, R., Obara, K., Nagai, K., Murase, R., Aoki, S., Furuta, T., Miura, K., Wu, J., Yamagata, Y., Yasui, H., Kantar, M., Yoshimura, A., Kamura, T., McCouch, S., and *Ashikari M.

REGULATOR OF AWN ELONGATION 3, an E3 ubiquitin ligase, is responsible for loss of awns during African rice domestication.

Proc. Natl. Acad. Sci. USA, 120, e2207105120 (2023) Linkプレスリリース

人類はおよそ1万年かけて、野生イネを改良して栽培に適したものにしてきました。イネはアジアとアフリカの2地域で独立に栽培化されましたが、その標的となった表現型は両者で共通するものが多く、芒(のぎ)の喪失もその1つでした。イネの芒は種子先端に形成される突起状の構造物で、野生イネでは自然状況下において種子の拡散や鳥獣からの食害防除に役立っていますが、栽培する上では作業を煩雑化する形質で、栽培化の過程で取り除かれました。本研究では、栽培化の過程でアフリカイネが芒を失う原因となった遺伝子変異を同定しました。これまでに研究チームは、アジアイネの芒喪失にRAE1とRAE2の2つの遺伝子の機能欠損が重要であったことを示してきましたが、アフリカイネの芒喪失については詳しくわかっていませんでした。本研究では、アフリカイネにおける芒喪失はE3ユビキチンリガーゼをコードするRAE3という遺伝子の機能欠損が原因であったことを示しました。これまでアジアイネとアフリカイネの栽培化関連形質は、同じ遺伝子の異なる変異が選抜されることにより達成されてきたと報告されていましたが、今回初めて、アジアイネとアフリカイネで共通の栽培化形質(芒の喪失)が異なる遺伝子変異の選抜によってもたらされたことを明らかにしました。


Negoro, S., Hirabayashi, T., Iwasaki, R., Torii, K.U., and *Uchida, N.

EPFL peptide signalling ensures robust self-pollination success under cool temperature stress by aligning the length of the stamen and pistil.

Plant Cell Environ., 46, 451-463 (2023) Linkプレスリリース


Niimi, Y., Nagai, K., Ashikari, M., and *Mizuta, Y.

Deep fluorescence observation in rice shoots via clearing technology.

J. Vis. Exp., 184, e64116 (2022) Link


*Yamauchi, T., and Nakazono, M.

Modeling-based age-dependent analysis reveals the net patterns of ethylene-dependent and -independent aerenchyma formation in rice and maize roots.

Plant Sci., 321, 111340 (2022) Link


*Nagai, K., Kurokawa, Y., Mori, Y., Minami, A., Reuscher, S., Wu, J., Matsumoto, T., and Ashikari, M.

SNORKEL genes relating to flood tolerance were pseudogenized in normal cultivated rice.

Plants, 11, 376 (2022) Link


Fujihara, R., Uchida, N., Tameshige, T., Kawamoto, N., Hotokezaka, Y., Higaki, T., Simon, R., Torii, K.U., Tasaka, M., and *Aida, M.

The boundary-expressed EPIDERMAL PATTERNING FACTOR-LIKE2 gene encoding a signaling peptide promotes cotyledon growth during Arabidopsis thaliana embryogenesis.

Plant Biotechnol., 38, 317-322 (2021) Link


*Yin, Y.G., Mori, Y., Suzui, N., Kurita, K., Yamaguchi, M., Miyoshi, Y., Nagao, Y., Ashikari, M., *Nagai, K., and Kawachi, N.

Noninvasive imaging of hollow structures and gas movement revealed the gas partial-pressure-gradient-driven long-distance gas movement in the aerenchyma along the leaf blade to submerged organs in rice.

New Phytol., 232, 1974-1984 (2021) Link


Bessho-Uehara, K., Yamagata, Y., Takashi, T., Makino, T., Yasui, H., Yoshimura, A., and *Ashikari, M.

Exploring the loci responsible for awn development in rice through comparative analysis of all AA genome species.

Plants, 10, 725 (2021) Link


*Jiménez, JdlC., Pellegrini, E., Pedersen, O., and Nakazono, M.

Radial oxygen loss from plant roots – methods.

Plants, 10, 2322 (2021) Link


*Yamauchi, T., and *Nakazono, M.

Mechanisms of lysigenous aerenchyma formation under abiotic stress.

Trends Plant Sci., 27, 13-15 (2022) Link


Cheng, P., Cao, L.J., B, Chen., Ashikari, M., and *Song, X.J.

Fine mapping and characterization of two novel quantitative trait loci for early seedling growth in rice.

Planta, 253, 56 (2021) Link


Noorrohmah, S., Takahashi, H., and *Nakazono, M.

Formation of a barrier to radial oxygen loss in L-type lateral roots of rice.

Plant Root, 14, 33-41 (2020) Link