MENU

論文発表

武宮班・論文発表

光によってプロトンポンプが活性化し気孔が開くしくみを解明

Fuji, S., Yamauchi, S., Sugiyama, N., Kohchi, T., Nishihama, R., Shimazaki, K., and *Takemiya, A.

Light-induced stomatal opening requires phosphorylation of the C-terminal autoinhibitory domain of plasma membrane H+-ATPase.

Nature Commun., 15, 1195 (2024) Linkプレスリリース

気孔は陸上植物の表皮にある孔であり、光に応答して開口し、光合成に必要な二酸化炭素の吸収を促進します。細胞膜H+-ATPaseは細胞内のH+を細胞外へ汲み出す酵素であり、気孔開口の駆動力を形成します。しかし、H+-ATPaseが光によって活性化するしくみについては、これまで解明されていませんでした。本研究では、気孔を構成する孔辺細胞において、H+-ATPaseの自己阻害領域に存在する2カ所のThr残基(Thr-881, Thr-948)が青色光に応答して特異的にリン酸化されることを発見し、これらのリン酸化がH+-ATPaseの活性化と気孔開口に必須であることを突き止めました。さらにThr-881は孔辺細胞の光合成によってもリン酸化され、気孔開口を促進することを示しました。このしくみを応用することで、H+-ATPaseのはたらきや気孔の開閉を人為的に制御することが可能となり、CO2吸収力や成長を向上させた植物を開発できる可能性があります。なお、本論文は木下班の論文とback-to-backでNature Communications 誌の同一号に掲載されました。

山内 翔太、*武宮 淳史

オートファジーは孔辺細胞のROS恒常性を制御し気孔開口を可能にする

アグリバイオ, 7, 801-805 (2023)


Uemoto, K., Mori, F., Yamauchi, S., Kubota, A., Takahashi, N., Egashira, H., Kunimoto, Y., Araki, T., Takemiya, A., Ito, H., and *Endo, M.

Root PRR7 improves the accuracy of the shoot circadian clock through nutrient transport.

Plant Cell Physiol., 64, 352-362 (2023) Link


Oikawa, K., Goto-Yamada, S., Hayashi, Y., Takahashi, D., Kimori, Y., Shibata, M., Yoshimoto, K., Takemiya, A., Kondo, M., Hikino, K., Kato, A., Shimoda, K., Ueda, H., Uemura, M., Numata, K., Ohsumi, Y., Hara-Nishimura, I., Mano, S., *Yamada, K., and *Nishimura, M.

Pexophagy suppresses ROS-induced damage in leaf cells under high-intensity light.

Nature Commun., 13, 7493 (2022) Link


Murakami, N., Fuji, S., Yamauchi, S., Hosotani, S., Mano, J., and *Takemiya, A.

Reactive carbonyl species inhibit blue-light-dependent activation of the plasma membrane H+-ATPase and stomatal opening.

Plant Cell Physiol., 63, 1168-1176 (2022) Link


後藤班・論文発表

Bao, L., Inoue, N., Ishikawa, M., Gotoh, E., Teh, O.-K., Higa, T., Morimoto, T., Ginanjar, E.F., Harashima, H., Noda, N., Watahiki, M., Hiwatashi, Y., Sekine, M., Hasebe, M., Wada, M., and *Fujita, T.

A PSTAIRE-type cyclin-dependent kinase controls light responses in land plants.

Sci. Adv., 8, eabk2116 (2022) Link

祢宜班・論文発表

*Negi, J., Obata, T., Nishimura, S., Song, B., Yamagaki, S., Ono, Y., Okabe, M., Hoshino, N., Fukatsu, K., Tabata, R., Yamaguchi, K., Shigenobu, S., Yamada, M., Hasebe, M., Sawa, S., Kinoshita, T., Nishida, I., and Iba, K.

PECT1, a rate-limiting enzyme in phosphatidylethanolamine biosynthesis, is involved in the regulation of stomatal movement in Arabidopsis.

Plant J., 115, 563-576 (2023) Link


小畑智暉,宋普錫,*祢冝淳太郎

植物組織間で異なる葉緑体脂質代謝バランス

化学と生物, 60, 630-632 (2022)


Moriwaki, K., Yanagisawa, S., Iba, K., and *Negi, J.

Two independent cis-acting elements are required for the guard cell-specific expression of SCAP1, which is essential for late stomatal development.

Plant J., 110, 440-451 (2022) Link

太治班・論文発表

Mori, K., Murakoshi, Y., Tamura, M., Kunitake, S., Nishimura, K., Ariga, H., Tanaka, K., Iuchi, S., Yotsui, I., Sakata, Y., and *Taji, T.

Mutations in nuclear pore complex promote osmotolerance in Arabidopsis by suppressing the nuclear translocation of ACQOS and its osmotically induced immunity.

Front. Plant Sci., in press(2024)Link


Isono, K., Nakamura, K., Hanada, K., Shirai, K., Ueki, M., Tanaka, K., Tsuchimatsu, T., Iuchi, S., Kobayashi, M., Yotsui, I., Sakata, Y., and *Taji, T.

LHT1/MAC7 contributes to proper alternative splicing under long-term heat stress and mediates variation in the heat tolerance of Arabidopsis.

PNAS Nexus, pgad348(2023)Linkプレスリリース


Endo, N., Tsukimoto, R., Isono, K., Hosoi, A., Yamaguchi, R., Tanaka, K., Iuchi, S., Yotsui, I., Sakata, Y., and *Taji, T.

MOS4-associated complex contributes to proper splicing and suppression of ER stress under long-term heat stress in Arabidopsis.

PNAS Nexus, pgad329(2023)Linkプレスリリース


Kanamori, K., Nishimura, K., Horie, T., Sato, M.H., Kajino, T., Koyama, T., Ariga, H., Tanaka, K., Yotsui, I., Sakata, Y., and *Taji, T.

Golgi apparatus-localized CATION CALCIUM EXCHANGER4 promotes osmotolerance of Arabidopsis.

Plant Physiol., in press Linkプレスリリース


*Kawaguchi, Y.W., Tsuchikane, Y., Tanaka, K., Taji, T., Suzuki, Y., Toyoda, A., Ito, M., Watano, Y., Nishiyama, T., Sekimoto, H., and *Tsuchimatsu, T.

Extensive copy number variation explains genome size variation in the unicellular zygnematophycean alga, closterium peracerosum-strigosum-littorale complex.

Genome Biol. Evol., evad115(2023)Link


Sk, R., Miyabe, M.T., Takezawa, D., Yajima, S., Yotsui, I., Taji, T., and *Sakata, Y.

Targeted in vivo mutagenesis of a sensor histidine kinase playing an essential role in ABA signaling of the moss Physcomitrium patens.

Biochem. Biophys. Res. Commun., 637, 93-99(2022)Link


Kajino, T., Yamaguchi, M., Oshima, Y., Nakamura, A., Narushima, J., Yaguchi, Y., Yotsui, I., Sakata, Y., and *Taji, T.

KLU/CYP78A5, a cytochrome P450 monooxygenase identified via fox hunting, contributes to cuticle biosynthesis and improves various abiotic stress tolerances.

Front Plant Sci., 13, 904121(2022)Linkプレスリリース


Fukuda, N., Oshima, Y., Ariga, H., Kajino, T., Koyama, T., Yaguchi, Y., Tanaka, K., Yotsui, I., Sakata, Y., and *Taji, T.

ECERIFERUM 10 encoding an enoyl-CoA reductase plays a crucial role in osmotolerance and cuticular wax loading in Arabidopsis.

Front Plant Sci., 13, 898317(2022)Linkプレスリリース


Miao, Y., Xun, Q., Taji, T., Tanaka, K., Yasuno, N., Ding, C., and *Kyozuka, J.

ABERRANT PANICLE ORGANIZATION2 controls multiple steps in panicle formation through common direct target genes.

Plant Physiol., 189, 2210-2226(2022)Link


Uchida, K., Yamaguchi, M., Kanamori, K., Ariga, H., Isono, K., Kajino, T., Tanaka, K., Saijo, Y., Yotsui, I., Sakata, Y., and *Taji, T.

MAP KINASE PHOSPHATASE1 promotes osmotolerance by suppressing PHYTOALEXIN DEFICIENT4-independent immunity.

Plant Physiol., 189, 1128-1138(2022)Link


Tsukimoto, R., Isono, K., Kajino, T., Iuchi, S., Shinozawa, A., Yotsui, I., Sakata, Y., and *Taji, T.

Mitochondrial fission complex is required for long-term heat tolerance of Arabidopsis.

Plant Cell Physiol., 63, 296-304(2022)LinkResearch Highlights and Editor’s choice


Toriyama, T., Shinozawa, A., Yasumura, Y., Saruhashi, M., Hiraide, M., Ito, S., Matsuura, H., Kuwata, K., Yoshida, M., Baba, T., Yotsui, I, Taji, T., *Takezawa, D., and *Sakata, Y.

Sensor histidine kinases mediate ABA and osmostress signaling in the moss Physcomitrium patens.

Curr. Biol., 32, 164-175(2022)Linkプレスリリース


Loo, E., Tajima, Y., Yamada, K., Kido, S., Hirase, T., Ariga, H., Fujiwara, T., Tanaka, K., Taji, T., Somssich, I., Parker, J., and *Saijo, Y.

Recognition of microbe/damage-associated molecular patterns by leucine-rich repeat pattern recognition receptor kinases confers salt tolerance in plants.

Mol. Plant-Microbe Interact., 35, 554-566(2021)Link


太治輝昭、有賀裕剛

シロイヌナズナ野生系統を用いてストレス耐性の多様性を解明

生物の科学 遺伝(2021年11月号)Link

城所班・論文発表

*Takahashi, D., Soga, K., Kikuchi, T., Kutsuno, T., Hao, P., Sasaki, K., Nishiyama, Y., Kidokoro, S., Sampathkumar, A., Bacic, A., Johnson, K.L., and Kotake, T.

Structural changes in cell wall pectic polymers contribute to freezing tolerance induced by cold acclimation in plants.

Curr. Biol., 34, 958-968 (2024) Link


*Mizoi, J., Todaka, D., Imatomi, T., Kidokoro, S., Sakurai, T., Kodaira, K.S., Takayama, H., Shinozaki, K., and Yamaguchi-Shinozaki, K.

The ability to induce heat shock transcription factor-regulated genes in response to lethal heat stress is associated with thermotolerance in tomato cultivars.

Front. Plant Sci., 14, 1269964 (2023) Link


*Soma, F., Takahashi, F., Kidokoro, S., Kameoka, H., Suzuki, T., Uga, Y., *Shinozaki, K., and *Yamaguchi-Shinozaki, K.

Constitutively active B2 Raf-like kinases are required for drought-responsive gene expression upstream of ABA-activated SnRK2 kinases.

Proc. Natl. Acad. Sci. USA, 120, e2221863120 (2023) Link


植物の概日時計で働くコアクチベーターが低温・高温耐性獲得にも機能することを発見

*Kidokoro, S., Konoura, I., Soma, F., Suzuki, T., Miyakawa, T., Tanokura, M., *Shinozaki, K., and *Yamaguchi-Shinozaki, K.

Clock-regulated coactivators selectively control gene expression in response to different temperature stress conditions in Arabidopsis.

Proc. Natl. Acad. Sci. USA, 120, e2216183120 (2023) Link

気温は自然界において絶え間なく変化しており、生物の成長や生存に多大な影響を与えます。植物は、常温時には明暗などの周期的な変化に応じて概日時計を介して成長を制御しています。一方で、低温ストレスや高温ストレスに晒されると、ストレスに応じた耐性遺伝子の発現を誘導します。本研究では、概日時計で働くことが知られていた転写コアクチベーターであるLNKファミリーが低温ストレスや高温ストレスの初期応答における遺伝子発現の誘導と耐性獲得にも機能することを明らかにしました。特に、シロイヌナズナが持つ4つのLNK(LNK1-LNK4)のうち、機能が未知であったLNK3とLNK4が低温ストレス時の遺伝子発現誘導において強く機能することを見出しました。またLNK1とLNK2は常温時と高温ストレス時の遺伝子発現誘導において機能していました。温度変化に応じたLNKタンパク質の使い分けにより、植物が成長と耐性獲得のシグナル経路を柔軟に切り替えることが可能になると考えられます。


田畑班・論文発表

*Tabata, R.

Regulation of the iron-deficiency response by IMA/FEP peptide.

Front Plant Sci., 14, 1107405 (2023) Link


田畑亮, 小林高範

植物の鉄獲得戦略を支える分子メカニズム.

化学と生物, Vol. 61 (5月号) (2023) Link


塚越班・論文発表

Uemura, Y., and *Tsukagoshi, H.

Quantitative analysis of lateral root development with time-lapse imaging and deep neural network.

Quant. Plant Biol. 5, e1. (2024) Link


Mase, K., Mizuno, H., Nakamichi, N., Suzuki, T., Kojima, T., Kamiya, S., Takeuchi, T., Kondo, C., Yamashita, H., Sakaoka, S., Morikami, A., and *Tsukagoshi, H.

AtMYB50 regulates root cell elongation by upregulating PECTIN METHYLESTERASE INHIBITOR 8 in Arabidopsis thaliana.

PLoS One. 18, e0285241 (2023) Link


Uemura, Y., Kimura, S., Ohta, T., Suzuki, T., Mase, K., Kato, H., Sakaoka, S., Uefune, M., Komine, Y., Hotta, K., Shimizu, M., Morikami, A., and *Tsukagoshi, H.

A very long chain fatty acid responsive transcription factor, MYB93, regulates lateral root development in Arabidopsis.

Plant J. 115, 1408-1427 (2023) Link

田村班・論文発表

Daicho, K.M., Hirono-Hara, Y., Kikukawa, H., Tamura, K., and *Hara, K.Y.

Engineering yeast with a light-driven proton pump system in the vacuolar membrane.

Microbial Cell Factories, 23, 4 (2024) Link


Oishi, A., Nakagawa, S., and *Tamura, K.

Nucleoporin 50 proteins affect longevity and salinity stress tolerance in seeds.

J. Exp. Bot., 75, 60–72 (2024) Link


Mermet, S., Voisin, M., Mordier, J., Dubos, T., Tutois, S., Tuffery, P., Baroux, C., Tamura, K., Probst, A.V., Vanrobays, E., and *Tatout C.

Evolutionarily conserved protein motifs drive interactions between the plant nucleoskeleton and nuclear pores.

Plant Cell, 35, 4284–4303 (2023) Link


*Tamura, K., and Koide, M.

Protein phase separation of plant nuclear pore complex.

Mol. Plant, 16, 973-974 (2023) Link