MENU

研究成果

注目の論文

土壌中の窒素量に応じて開花時期を調節する分子機構を解明(木下班・今泉)

Sanagi, M., Aoyama, S., Kubo, A., Lu, Y., Sato, Y., Ito, S., Abe, M., Mitsuda, N., Ohme-Takagi, M., Kiba, T., Nakagami, H., Rolland, F., Yamaguchi, J., *Imaizumi, T., and *Sato, T.

Low nitrogen conditions accelerate flowering by modulating the phosphorylation state of FLOWERING BHLH 4 in Arabidopsis.

Proc. Natl. Acad. Sci. USA, 118, e2022942118 (2021) Linkプレスリリース

土壌中の窒素量が開花時期に影響を及ぼすという観察は農作物でも見受けられますがそのメカニズムは殆ど分かっていませんでした。本研究では、窒素量に応じてリン酸化の程度が顕著に異なる転写因子が開花制御に重要な因子であるFBH4であることを発見しました。さらに培養条件中の窒素量によりFBH4タンパク質のリン酸化修飾変化が起こり、タンパク質の細胞内局在を変化させることによって転写因子の活性を制御していることが示唆されました。その上FBH4タンパク質はSnRK1リン酸化酵素によりリン酸化される事、また窒素量に応じてSnRK1の活性が変わる事を見出しました。これらのメカニズムを介して窒素量の変化が開花時期を調節する事を明らかにしました。


微量DNAから実施可能な全ゲノム長鎖DNAメチル化解析手法を開発(松下班・関)

Sakamoto, Y., Zaha, S., Nagasawa, S., Miyake, S., Kojima, Y., Suzuki, A., *Suzuki, Y., and *Seki, M.

Long-read whole-genome methylation patterning using enzymatic base conversion and nanopore sequencing.

Nucleic Acids Res., 49, e81 (2021) Linkプレスリリース

DNAメチル化は、遺伝子発現量の調節などに中心的な役割を果たしていて、細胞の分化や病気などに重要な役割を担っています。これまでのDNAメチル化解析手法は、短いDNAを解析する方法が主で、1本の長いDNAがどのようにメチル化されているのかは十分にわかっていませんでした。近年、ナノポアシークエンサーといった長いDNAを読み取ることのできるシークエンサーが登場し、長いDNAのメチル化の解析が可能となりましたが、多量のDNAを必要とするため実施できるサンプルが限られていました。今回、酵素を利用した塩基変換法とナノポアシークエンスを組み合わせて、通常のナノポアシークエンスの1/100程度のDNA量から実施できる全ゲノムDNAメチル化解析手法nanoEMを開発しました。さらに、nanoEMを微量の臨床サンプルにも適用できることを示しました。


窒素栄養によって根粒形成遺伝子の発現が調節される仕組みを解明(壽崎班)

#Nishida, H., #Nosaki, S., Suzuki, T., Ito, M., Miyakawa, T., Nomoto, M., Tada, Y., Miura, K., Tanokura, M., Kawaguchi, M., and *Suzaki, T.

Different DNA-binding specificities of NLP and NIN transcription factors underlie nitrate-induced control of root nodulation.

Plant Cell, 33, 2340-2359 (2021) Linkプレスリリース

高濃度の窒素栄養が含まれる土壌では根粒形成が抑制されます。NLP転写因子がその制御に関わることが知られていましたが、根粒形成を促進または抑制する遺伝子が高窒素栄養環境では具体的にどのような仕組みによって発現調節を受けるのかはよく分かっていませんでした。今回の研究では、硝酸栄養存在下でNLPと根粒を作る働きを持つNIN転写因子が相互作用をすることで、NINの標的遺伝子の発現が抑制されることを示しました。また、NLPとNINのDNA結合特異性の違いがその制御の背景にあることも分かりました。これらの発見により、NLPをハブとした硝酸栄養に応じた遺伝子発現と根粒形成抑制の基本制御メカニズムが明らかになりました。


硝酸イオン輸送体NRT2.1の活性をオンにする脱リン酸化酵素を発見(松林班)

Ohkubo, Y., Kuwata, K., and *Matsubayashi, Y.

A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1.

Nature Plants, 7, 310-316 (2021) Linkプレスリリース

窒素は植物の成長に最も重要な栄養素のひとつであり、土壌中に存在する硝酸を主要な窒素源として根から吸収しています。この硝酸吸収の過程で主要な役割を担うのが、根の表面に存在する硝酸イオン輸送体NRT2.1です。NRT2.1の活性はリン酸化修飾によってオフとなることが知られていましたが、この過程の可逆性や制御に関わる酵素についてはよく分かっていませんでした。今回の研究では、NRT2.1を脱リン酸化して硝酸吸収活性をオンにする脱リン酸化酵素CEPHを発見し、この過程が可逆的であるとともに、窒素欠乏に応答した硝酸吸収制御の重要なスイッチング機構であることを示しました。植物は窒素が十分あるうちにNRT2.1を多めに合成して不活性型でストックしておき、窒素不足になった時にCEPHを使って活性化することで、変動する窒素栄養環境に巧みに適応していることが明らかになりました。


アンチセンス転写によって駆動されるエピゲノム制御機構の発見(佐瀬班・稲垣)

*Inagaki, S., Takahashi, M., Takashima, K., Oya, S., and Kakutani, T.

Chromatin-based mechanisms to coordinate convergent overlapping transcription.

Nature Plants, 7, 295-302 (2021) Link, プレスリリース

生物のゲノム上ではタンパク質をコードする遺伝子のみならず、非コード転写も頻繁に起きており、ゲノム上では入り組んだ転写が起きていることが分かってきていますが、この入り組んだ転写を調節する仕組みはほとんど理解されていません。今回の研究では、ゲノムが小さく、遺伝子が密に並んでいるシロイヌナズナにおいて、数百もの遺伝子領域において逆向きにオーバーラップする転写(アンチセンス転写)が起きていること、またこのアンチセンス転写が起きている領域の転写を調節する新たなエピゲノム制御機構を見出しました。またこの制御は、植物が冬の低温を記憶し春に開花する仕組みに関与しています。これらの結果は、ゲノム上での近隣遺伝子との関係性がエピゲノムを介して遺伝子発現や環境への適応に果たす役割を示唆しています。


植物の養分吸収、気孔開口や光合成に多大な影響を与える重要因子の発見(木下班)

Zhang, M., Wang, Y., Chen, X., Xu, F., Ding, M., Ye, W., Kawai, Y., Toda, Y., Hayashi, Y., Suzuki, T., Zeng, H., Xiao, L., Xiao, X., Xu, J., Guo, S., Yan, F., Shen, Q., Xu, G., *Kinoshita, T., and *Zhu, Y.

Plasma membrane H+-ATPase overexpression increases rice yield via simultaneous enhancement of nutrient uptake and photosynthesis.

Nature Commun., 12, 735 (2021) Link, プレスリリース

植物は、根から窒素などの養分を吸収すると同時に、葉の気孔を開き、CO2を取り込んで光合成を行い、成長しています。本研究では、イネの養分吸収と気孔開口について解析を行い、細胞膜プロトンポンプと呼ばれる酵素が共通して重要な役割を果たすことが明らかとなりました。そこで、プロトンポンプ過剰発現イネの詳細な解析を行ったところ、野生株と比べ、根での養分吸収、気孔開口、光合成活性が20%以上増加し、隔離水田での栽培試験において収量が30%以上増加することが明らかとなりました。さらに過剰発現イネでは窒素の施肥量を半分に減らしても、通常より収量が多いことを見出しました。本研究の成果は、今後、食糧増産や環境問題に大きく関わるCO2や肥料の削減に貢献することが期待されます。


環境変化に応じて遺伝子が細胞核内の空間配置を変化させる仕組みを解明(杉本班・松永)

Sakamoto, Y., Sato, M., Sato, Y., Harada, A., Suzuki, T., Goto, C., Tamura, K., Toyooka, K., Kimura, H., Ohkawa, Y., Hara-Nishimura, I., Takagi, S., and *Matsunaga, S.

Subnuclear gene positioning through lamina association affects copper tolerance.

Nature Commun., 11, 5914 (2020) Link, プレスリリース

遺伝子は3次元的にDNAがパッケージングされた細胞核内で、空間に配置されています。そのため、遺伝子が細胞核内の3次元的配置を変化させて、遺伝子発現のON/OFFを調節することが知られていましたが、その詳細なメカニズムは不明なままでした。細胞核内の遺伝子の3次元的配置を制御するタンパク質として、核膜裏打ちタンパク質CRWNを同定しました。また、蛍光イメージング、クロマチン挿入標識(CHIL)、蛍光in situ hybridization (FISH)を用いることで、外部環境の変化に応じて遺伝子の空間配置が変化することが明らかになりました。銅環境の変化に合わせて銅関連遺伝子の空間配置が変化し、銅関連遺伝子がCRWNに結合することで遺伝子の発現がONになることがわかりました。